perm filename LOSS.1[TIM,LSP]15 blob
sn#742045 filedate 1984-02-09 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00014 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 (declare
C00006 00003 (baz 50)
C00007 00004
C00008 00005 dir *.tim/foo
C00010 00006 (load "fmeter.lsp")
C00011 00007 (fasload float)
C00012 00008 (fasload float)
C00015 00009 (fasload float)
C00022 00010
C00023 00011 (load "chart.lsp")
C00035 00012 (array p fixnum 100)
C00036 00013 (fasload puzzl1)
C00037 00014 Here are the ones I've done so far:
C00066 ENDMK
C⊗;
(declare
(fasload meter fas))
(declare
(setq meter:count-only t))
;(meter:meter baz
; (meter-funs ((+ "+'s")(= "='s"))
; (defun baz (n)
; (do ((n n (1- n))
; (a 0))
; ((= n 0) a)
; (foo n)
; (setq a (+ a n)))) )
; (meter-funs ((+ "+'s")(= "='s"))
; (defun foo (n)
; (do ((n n (1- n))
; (a 0))
; ((= n 0) a)
; (setq a (+ a n))))))
(meter:meter baz
(meter-funs ((+ "+'s")(= "='s")(foo "Calls to FOO"))
(defun baz (n)
(mn "baz" baz)
(do ((n n (1- n))
(a 0))
((= n 0) a)
(foo n)
(setq a (+ a n)))))
(meter-funs ((+ "+'s")(= "='s"))
(defun foo (n)
(mn "Foo" foo)
(do ((n n (1- n))
(a 0))
((= n 0) a)
(setq a (+ a n))))))
(meter:meter baz
(meter-funs ((cdr "cdr")(car "car")
(foo "Foo")(setq "Setq")
(cdar "car"car)(ztesch "Ztesch")
(cdar "cdr" cdr))
(defun baz (l)
(setq l (ztesch l))
(foo (car l)
(cdr l)
(cdar l)))))
;(baz 50)
;(meter:report-baz)
;Statistics
;= <calls> (<percentage>) [runtime (<percentage>)]
;
;Meter for: BAZ
;='s = 51 (33.77%) [0.0 (0.0%)]
;Calls to FOO = 50 (33.11%) [0.06 (100.0%)]
;+'s = 50 (33.11%) [0.0 (0.0%)]
;Total = 151 0.06
;
;Meter for: FOO
;='s = 1325 (50.96%) [0.02 (64.52%)]
;+'s = 1275 (49.04%) [0.011 (35.48%)]
;Total = 2600 0.031
;T
;(baz 50)
;(meter:report-baz)
;Statistics
= <calls> (<percentage>)
;
;Meter for: BAZ
;='s = 51 (33.77%)
;Calls to FOO = 50 (33.11%)
;+'s = 50 (33.11%)
;Total = 151
;
;Meter for: FOO
;='s = 1325 (50.96%)
;+'s = 1275 (49.04%)
;Total = 2600
Meter for: MATCH
Cars = 1319800 (34.63%) [10.632 (19.37%)]
Eqs = 755700 (19.83%) [6.953 (12.67%)]
Nulls = 504100 (13.23%) [4.369 (7.96%)]
Cdrs = 483400 (12.68%) [3.852 (7.02%)]
Conses = 239200 (6.28%) [21.24 (38.69%)]
Char1 = 226800 (5.95%) [6.777 (12.35%)]
MATCH = 213600 (5.6%)
Nconcs = 69000 (1.81%) [1.071 (1.95%)]
Returns = 0 (0.0%) [0.0 (0.0%)]
Total = 3811600 [54.894]
dir *.tim/foo
copy jqj.tim←SCCPP.TIM[TIM,LSP],DOLPHI.TIM[TIM,LSP],780.TIM[TIM,LSP],DOLPH.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,DERIV.TIM[TIM,LSP],TAK.TIM[TIM,LSP],DDERIV.TIM[TIM,LSP],FPRINT.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,PUZZLE.TIM[TIM,LSP],FRPOLY.TIM[TIM,LSP],TAKL.TIM[TIM,LSP],TAKR.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,CACHE.TIM[TIM,LSP],FFT.TIM[TIM,LSP],UNCACH.TIM[TIM,LSP],FDDERI.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,F2.TIM[TIM,LSP],TRIANG.TIM[TIM,LSP],BROWSE.TIM[TIM,LSP],DIV2.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,TPRINT.TIM[TIM,LSP],FREAD.TIM[TIM,LSP],BOYER.TIM[TIM,LSP],DESTRU.TIM[TIM,LSP]
copy jqj.tim←jqj.tim,PUZZL1.TIM[TIM,LSP],NREVER.TIM[TIM,LSP],TRAVER.TIM[TIM,LSP]
Exit
↑C
.
File already exists, DSK:JQJ.TIM[TIM,LSP].
Type Y to replace.
y
Exit
↑C
.
File already exists, DSK:JQJ.TIM[TIM,LSP].
Type Y to replace.
(plus 15339 2005 2005 1987 13)
(load "fmeter.lsp")
(setq meter:funs '((* "*")(+ "+")
(setq "setq's")
(1+ "1+'s")(store "Asets")
(- "-'s")(+ "+'s")(↑ "↑'s")(+$ "+$'s")(-$ "-$'s")(arraycall "Arefs")))
(fasload float)
(machar)
*ibeta*
*it*
*irnd*
*ngrd*
*machep*
*epsneg*
*negep*
*eps*
*iexp*
*minexp*
*maxexp*
*xmin*
*xmax*
(let ((a (square-root 2.0))) (*$ a a))
(sq (square-root 2365.2343))
(defun sq (x)(*$ x x))
(plist 'sqrt)
(sqrt 2.0)
(square-root 2.0)
(fasload float)
(fasload float)
(sqrt-test)
(TEST OF SQRT (X * X) - X)
(8000 RANDOM ARGUMENTS WERE TESTED IN THE INTERVAL (0.70710678 1.0))
(SQRT (X) WAS LARGER 618 TIMES)
(IT AGREED 7382 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.05350655E-8 = 2 ↑ -26.5002255 OCCURRED
FOR X = 0.707217306)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.499774456)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 2.61463252E-9 = 2 ↑ -28.5107443)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF SQRT (X * X) - X)
(8000 RANDOM ARGUMENTS WERE TESTED IN THE INTERVAL (1.0 1.41421357))
(SQRT (X) WAS LARGER 3928 TIMES)
(IT AGREED 4072 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.48971613E-8 = 2 ↑ -26.0003872 OCCURRED
FOR X = 1.0002685)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.99961281)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 8.7896637E-9 = 2 ↑ -26.761545)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.238455057)
(TEST OF SPECIAL ARGUMENTS)
(SQRT (*XMIN*) = SQRT (2.93873587E-39) = 5.421011E-20)
(SQRT (1.0 - *EPSNEG*) = SQRT (1.0 - 7.4505806E-9) = 1.0)
(SQRT (1.0) = 1.00000001)
(SQRT (1.0 + *EPS*) = SQRT (1.0 + 7.4505806E-9) = 1.00000001)
(SQRT (*XMAX*) = SQRT (1.70141183E+38) = 1.30438179E+19)
(TEST OF ERROR RETURNS)
(SQRT WILL BE CALLED WITH AN ARGUMENT OF 0.0 THIS SHOULD NOT TRIGGER AN
ERROR)
(SQRT RETURNED THE VALUE 0.0)
(SQRT WILL BE CALLED WITH AN ARGUMENT OF -1.0 THIS SHOULD TRIGGER AN ERROR)
Square-root of a negative number
(SQRT RETURNED THE VALUE 0.0)
(THIS CONCLUDES THE TESTS)
T
(fasload float)
(fasload machar)
(setq *results* ())
(step arctan-test)
(arctan-test)
(show-results)
arctan2 called with u = 0.0 and v = 0.0
T
(TEST OF ARCTAN (X) VS TRUNCATED TAYLOR SERIES)
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (-0.0625 0.0625))
(ARCTAN (X) WAS LARGER 0 TIMES)
(IT AGREED 2000 TIMES)
(IT WAS SMALLER 0 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 0.0 = 2 ↑ -999.0 OCCURRED FOR X = 0.0)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 0.0 = 2 ↑ -999.0)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF ARCTAN (X) VS ARCTAN (1 // 16) + ARCTAN ((X - 1 // 16) // (1 +
X // 16)))
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.0625 0.267949194))
(ARCTAN (X) WAS LARGER 305 TIMES)
(IT AGREED 1301 TIMES)
(IT WAS SMALLER 394 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.48773032E-8 = 2 ↑ -26.0023117 OCCURRED
FOR X = 0.255769014)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.99768829)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 6.10085046E-9 = 2 ↑ -27.2883422)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(TEST OF 2 * ARCTAN (X) VS ARCTAN (2X // (1 - X * X)))
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.267949194 0.414213568))
(ARCTAN (X) WAS LARGER 465 TIMES)
(IT AGREED 1255 TIMES)
(IT WAS SMALLER 280 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 2.8151059E-8 = 2 ↑ -25.0822356 OCCURRED
FOR X = 0.271022182)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.91776443)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 7.2907918E-9 = 2 ↑ -27.0312774)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL (0.414213568 1.0))
(ARCTAN (X) WAS LARGER 755 TIMES)
(IT AGREED 1223 TIMES)
(IT WAS SMALLER 22 TIMES)
(THERE ARE 27 SIGNIFICANT BASE 2 DIGITS IN A FLOATING-POINT NUMBER)
(THE MAXIMUM RELATIVE ERROR OF 1.8836265E-8 = 2 ↑ -25.6619117 OCCURRED
FOR X = 0.41755109)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.33808827)
(THE ROOT MEAN SQUARE RELATIVE ERROR WAS 6.77307993E-9 = 2 ↑ -27.1375408)
(THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.0)
(SPECIAL TESTS)
(THE IDENTITY: ARCTAN (-X) = -ARCTAN (X) WILL BE TESTED)
(X : F (X) + F (-X))
(0.277842846 : 0.0)
(4.7303558 : 0.0)
(1.29447147 : 0.0)
(1.80893339 : 0.0)
(1.116675 : 0.0)
(THE IDENTITY ARCTAN (X) = X FOR X SMALL WILL BE TESTED)
(X : X - F (X))
(6.83125204E-9 : 0.0)
(3.41562602E-9 : 0.0)
(1.70781301E-9 : 0.0)
(8.5390651E-10 : 0.0)
(4.26953256E-10 : 0.0)
(THE IDENTITY ARCTAN (X // Y) = ARCTAN2 (X Y) WILL BE TESTED)
(THE FIRST COLUMN OF RESULTS SHOULD BE 0 AND THE SECOND SHOULD BE +-π)
(X : Y : F1 (X // Y) - F2 (X Y) : F1 (X // Y) - F2 (X // -Y))
(0.437566936 : 0.173966983 : 0.0 : -3.14159265)
(0.98349154 : 0.234110685 : 0.0 : -3.14159265)
(-0.944657445 : 0.97945464 : 0.0 : 3.14159265)
(-0.27268049 : 0.97873473 : 0.0 : 3.14159265)
(-0.6326329 : 0.73022202 : 0.0 : 3.14159268)
(TEST OF VERY SMALL ARGUMENT)
(ARCTAN (1.2621776E-29) = 1.2621776E-29)
(TEST OF ERROR RETURNS)
(ARCTAN WILL BE CALLED WITH THE ARGUMENT 1.70141183E+38)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN (1.70141183E+38) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 1.0 0.0)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (1.0 0.0) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 2.93873587E-39 1.70141183E+38)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (2.93873587E-39 1.70141183E+38) = 1.57079633)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 1.70141183E+38 2.93873587E-39)
(THIS SHOULD NOT TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (1.70141183E+38 2.93873587E-39) = 0.0)
(ARCTAN2 WILL BE CALLED WITH THE ARGUMENTS 0.0 0.0)
(THIS SHOULD TRIGGER AN ERROR MESSAGE)
(ARCTAN2 (0.0 0.0) = 0.0)
(THIS CONCLUDES THE TESTS)
T
(load "chart.lsp")
(load "data.bch")
(fasload chart fas)
(fasload data fas)
(do-chart '(franz780 franz750 franz68k nil750))
Benchmark | 780 Franz | 750 Franz | Franz 68000 | 750 NIL |
-------------------------------------------------------------------|
| | | | |
Boyer | 71.5 | 111.45 | 139.86 | 165.11 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Browse | 170.25 | 261.14 | 413.03 | 2326.38 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Destruct | 13.73 | 15.63 | 22.99 | 17.91 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Traverse | | | | |
Initialize | 30.27 | 52.28 | - | - |
Traverse | 82.98 | 132.62 | - | - |
| | | | |
-------------------------------------------------------------------|
| | | | |
Tak | 8.29 | 14.8 | - | 8.32 |
| | | | |
-------------------------------------------------------------------|
| | | | |
STak | 6.32 | 11.18 | 11.17 | 46.38 |
| | | | |
-------------------------------------------------------------------|
| | | | |
CTak | 12.05 | 18.34 | 20.75 | 19.83 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Takl | 9.72 | 18.4 | 19.75 | 78.4 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Takr | 3.62 | 5.08 | - | 11.42 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Deriv | - | - | - | 47.32 |
| | | | |
-------------------------------------------------------------------|
| | | | |
DDeriv | - | - | - | 55.9 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fdderiv | - | - | - | 54.74 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Div2 | | | | |
Iterative | 19.97 | 25.84 | 32.81 | 19.38 |
Recursive | 24.65 | 31.88 | 36.19 | 29.85 |
| | | | |
-------------------------------------------------------------------|
| | | | |
FFT | - | - | - | 73.76 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Puzzle | - | - | - | 995.87 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Triang | - | - | - | 1302.08 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fprint | 0.61 | 1.23 | 1.43 | 75.88 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Fread | 1.48 | 2.34 | 2.81 | 55.8 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Tprint | 0.52 | 0.87 | 1.65 | 105.86 |
| | | | |
-------------------------------------------------------------------|
| | | | |
Frpoly | | | | |
Power = 2 | | | | |
r=x+y+z+1 | 0.02 | 0.05 | - | 0.04 |
r2=1000*r | 0.02 | 0.03 | - | 0.3 |
r3=r in flonums | 0.03 | 0.03 | - | 0.1 |
Power = 5 | | | | |
r=x+y+z+1 | 0.02 | 0.35 | - | 0.72 |
r2=1000*r | 0.38 | 1.75 | - | 4.3 |
r3=r in flonums | 0.22 | 1.69 | - | 0.85 |
Power = 10 | | | | |
r=x+y+z+1 | 2.33 | 6.75 | - | 7.73 |
r2=1000*r | 10.27 | 20.77 | - | 77.7 |
r3=r in flonums | 2.6 | 10.22 | - | 9.3 |
Power = 15 | | | | |
r=x+y+z+1 | 24.62 | 46.35 | - | 50.74 |
r2=1000*r | 116.88 | 222.6 | - | - |
r3=r in flonums | 31.85 | 52.47 | - | - |
| | | | |
-------------------------------------------------------------------|
T
(array p fixnum 100)
(defmacro seta (array index1 index2 value)
`(store (,array (+ ,index1 (* ,index2 2))) ,value))
(defmacro elt (array index1 index2)
`(,array (+ ,index1 (* ,index2 2))))
(let((n 0))
(do ((i 0 (1+ i)))
((= i 2.) t)
(do ((j 0 (1+ j)))
((= j 50.) t)
(seta p i j n) (setq n (1+ n)))))))
(do ((i 0 (1+ i)))
((= i 2.) t)
(do ((j 0 (1+ j)))
((= j 50.) t)
(print (elt p i j )))))
(listarray 'p)
(fasload puzzl1)
(start)
Piece 2 at 2
Piece 9 at 355
Piece 8 at 331
Piece 4 at 292
Piece 14 at 279
Piece 13 at 277
Piece 6 at 276
Piece 2 at 268
Piece 2 at 220
Piece 4 at 204
Piece 2 at 203
Piece 2 at 155
Piece 10 at 139
Piece 3 at 111
Piece 3 at 109
Piece 2 at 107
Piece 4 at 91
success in 2005 trials
NIL
;;; Here are the ones I've done so far:
(defun tak (x y z)
(catch 'tak (tak1 x y z)))
(defun tak1 (x y z)
(cond ((not (ilessp y x))
(throw 'tak z))
(t (tak1
(catch 'tak
(tak1 (isub1 x)
y
z))
(catch 'tak
(tak1 (isub1 y)
z
x))
(catch 'tak
(tak1 (isub1 z)
x
y))))))
(defun timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(defvar x)(defvar y)(defvar z)
(defun tak (x y z)
(stak))
(defun stak ()
(cond ((not (ilessp y x))
z)
(t (let ((x (let ((x (isub1 x))
(y y)
(z z))
(stak)))
(y (let ((x (isub1 y))
(y z)
(z x))
(stak)))
(z (let ((x (isub1 z))
(y x)
(z y))
(stak))))
(stak)))))
(defun timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(eval-when (compile) (localf tak))
(de tak (x y z)
(cond ((not (ilessp y x)) ;x≤y
z)
(t (tak (tak (isub1 x) y z)
(tak (isub1 y) z x)
(tak (isub1 z) x y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(eval-when (compile) (localf tak))
(de tak (x y z)
(cond ((not (ilessp y x)) ;x≤y
z)
(t (tak (tak (isub1 x) y z)
(tak (isub1 y) z x)
(tak (isub1 z) x y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)
(tak 18 12 6)))
;;; **************************************************
(defun listn (n)
(cond
((izerop n)
nil)
(t (cons n (listn (isub1 n))))))
(defun mas (x y z)
(cond
((not (shorterp y x))
z)
(t (mas (mas (cdr x)
y z)
(mas (cdr y)
z x)
(mas (cdr z)
x y)))))
(defun shorterp (x y)
(and y (or (null x)
(shorterp (cdr x)
(cdr y)))))
(setq 18l (listn 18)
12l (listn 12)
6l (listn 6))
(defun timit () (mas 18l 12l 6l))
;;; **************************************************
(DEFUN TAK0 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK1 (TAK37 (isub1 X) Y Z)
(TAK11 (isub1 Y) Z X)
(TAK17 (isub1 Z) X Y)))))
(DEFUN TAK1 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK2 (TAK74 (isub1 X) Y Z)
(TAK22 (isub1 Y) Z X)
(TAK34 (isub1 Z) X Y)))))
(DEFUN TAK2 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK3 (TAK11 (isub1 X) Y Z)
(TAK33 (isub1 Y) Z X)
(TAK51 (isub1 Z) X Y)))))
(DEFUN TAK3 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK4 (TAK48 (isub1 X) Y Z)
(TAK44 (isub1 Y) Z X)
(TAK68 (isub1 Z) X Y)))))
(DEFUN TAK4 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK5 (TAK85 (isub1 X) Y Z)
(TAK55 (isub1 Y) Z X)
(TAK85 (isub1 Z) X Y)))))
(DEFUN TAK5 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK6 (TAK22 (isub1 X) Y Z)
(TAK66 (isub1 Y) Z X)
(TAK2 (isub1 Z) X Y)))))
(DEFUN TAK6 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK7 (TAK59 (isub1 X) Y Z)
(TAK77 (isub1 Y) Z X)
(TAK19 (isub1 Z) X Y)))))
(DEFUN TAK7 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK8 (TAK96 (isub1 X) Y Z)
(TAK88 (isub1 Y) Z X)
(TAK36 (isub1 Z) X Y)))))
(DEFUN TAK8 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK9 (TAK33 (isub1 X) Y Z)
(TAK99 (isub1 Y) Z X)
(TAK53 (isub1 Z) X Y)))))
(DEFUN TAK9 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK10 (TAK70 (isub1 X) Y Z)
(TAK10 (isub1 Y) Z X)
(TAK70 (isub1 Z) X Y)))))
(DEFUN TAK10 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK11 (TAK7 (isub1 X) Y Z)
(TAK21 (isub1 Y) Z X)
(TAK87 (isub1 Z) X Y)))))
(DEFUN TAK11 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK12 (TAK44 (isub1 X) Y Z)
(TAK32 (isub1 Y) Z X)
(TAK4 (isub1 Z) X Y)))))
(DEFUN TAK12 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK13 (TAK81 (isub1 X) Y Z)
(TAK43 (isub1 Y) Z X)
(TAK21 (isub1 Z) X Y)))))
(DEFUN TAK13 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK14 (TAK18 (isub1 X) Y Z)
(TAK54 (isub1 Y) Z X)
(TAK38 (isub1 Z) X Y)))))
(DEFUN TAK14 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK15 (TAK55 (isub1 X) Y Z)
(TAK65 (isub1 Y) Z X)
(TAK55 (isub1 Z) X Y)))))
(DEFUN TAK15 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK16 (TAK92 (isub1 X) Y Z)
(TAK76 (isub1 Y) Z X)
(TAK72 (isub1 Z) X Y)))))
(DEFUN TAK16 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK17 (TAK29 (isub1 X) Y Z)
(TAK87 (isub1 Y) Z X)
(TAK89 (isub1 Z) X Y)))))
(DEFUN TAK17 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK18 (TAK66 (isub1 X) Y Z)
(TAK98 (isub1 Y) Z X)
(TAK6 (isub1 Z) X Y)))))
(DEFUN TAK18 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK19 (TAK3 (isub1 X) Y Z)
(TAK9 (isub1 Y) Z X)
(TAK23 (isub1 Z) X Y)))))
(DEFUN TAK19 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK20 (TAK40 (isub1 X) Y Z)
(TAK20 (isub1 Y) Z X)
(TAK40 (isub1 Z) X Y)))))
(DEFUN TAK20 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK21 (TAK77 (isub1 X) Y Z)
(TAK31 (isub1 Y) Z X)
(TAK57 (isub1 Z) X Y)))))
(DEFUN TAK21 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK22 (TAK14 (isub1 X) Y Z)
(TAK42 (isub1 Y) Z X)
(TAK74 (isub1 Z) X Y)))))
(DEFUN TAK22 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK23 (TAK51 (isub1 X) Y Z)
(TAK53 (isub1 Y) Z X)
(TAK91 (isub1 Z) X Y)))))
(DEFUN TAK23 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK24 (TAK88 (isub1 X) Y Z)
(TAK64 (isub1 Y) Z X)
(TAK8 (isub1 Z) X Y)))))
(DEFUN TAK24 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK25 (TAK25 (isub1 X) Y Z)
(TAK75 (isub1 Y) Z X)
(TAK25 (isub1 Z) X Y)))))
(DEFUN TAK25 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK26 (TAK62 (isub1 X) Y Z)
(TAK86 (isub1 Y) Z X)
(TAK42 (isub1 Z) X Y)))))
(DEFUN TAK26 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK27 (TAK99 (isub1 X) Y Z)
(TAK97 (isub1 Y) Z X)
(TAK59 (isub1 Z) X Y)))))
(DEFUN TAK27 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK28 (TAK36 (isub1 X) Y Z)
(TAK8 (isub1 Y) Z X)
(TAK76 (isub1 Z) X Y)))))
(DEFUN TAK28 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK29 (TAK73 (isub1 X) Y Z)
(TAK19 (isub1 Y) Z X)
(TAK93 (isub1 Z) X Y)))))
(DEFUN TAK29 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK30 (TAK10 (isub1 X) Y Z)
(TAK30 (isub1 Y) Z X)
(TAK10 (isub1 Z) X Y)))))
(DEFUN TAK30 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK31 (TAK47 (isub1 X) Y Z)
(TAK41 (isub1 Y) Z X)
(TAK27 (isub1 Z) X Y)))))
(DEFUN TAK31 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK32 (TAK84 (isub1 X) Y Z)
(TAK52 (isub1 Y) Z X)
(TAK44 (isub1 Z) X Y)))))
(DEFUN TAK32 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK33 (TAK21 (isub1 X) Y Z)
(TAK63 (isub1 Y) Z X)
(TAK61 (isub1 Z) X Y)))))
(DEFUN TAK33 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK34 (TAK58 (isub1 X) Y Z)
(TAK74 (isub1 Y) Z X)
(TAK78 (isub1 Z) X Y)))))
(DEFUN TAK34 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK35 (TAK95 (isub1 X) Y Z)
(TAK85 (isub1 Y) Z X)
(TAK95 (isub1 Z) X Y)))))
(DEFUN TAK35 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK36 (TAK32 (isub1 X) Y Z)
(TAK96 (isub1 Y) Z X)
(TAK12 (isub1 Z) X Y)))))
(DEFUN TAK36 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK37 (TAK69 (isub1 X) Y Z)
(TAK7 (isub1 Y) Z X)
(TAK29 (isub1 Z) X Y)))))
(DEFUN TAK37 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK38 (TAK6 (isub1 X) Y Z)
(TAK18 (isub1 Y) Z X)
(TAK46 (isub1 Z) X Y)))))
(DEFUN TAK38 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK39 (TAK43 (isub1 X) Y Z)
(TAK29 (isub1 Y) Z X)
(TAK63 (isub1 Z) X Y)))))
(DEFUN TAK39 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK40 (TAK80 (isub1 X) Y Z)
(TAK40 (isub1 Y) Z X)
(TAK80 (isub1 Z) X Y)))))
(DEFUN TAK40 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK41 (TAK17 (isub1 X) Y Z)
(TAK51 (isub1 Y) Z X)
(TAK97 (isub1 Z) X Y)))))
(DEFUN TAK41 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK42 (TAK54 (isub1 X) Y Z)
(TAK62 (isub1 Y) Z X)
(TAK14 (isub1 Z) X Y)))))
(DEFUN TAK42 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK43 (TAK91 (isub1 X) Y Z)
(TAK73 (isub1 Y) Z X)
(TAK31 (isub1 Z) X Y)))))
(DEFUN TAK43 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK44 (TAK28 (isub1 X) Y Z)
(TAK84 (isub1 Y) Z X)
(TAK48 (isub1 Z) X Y)))))
(DEFUN TAK44 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK45 (TAK65 (isub1 X) Y Z)
(TAK95 (isub1 Y) Z X)
(TAK65 (isub1 Z) X Y)))))
(DEFUN TAK45 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK46 (TAK2 (isub1 X) Y Z)
(TAK6 (isub1 Y) Z X)
(TAK82 (isub1 Z) X Y)))))
(DEFUN TAK46 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK47 (TAK39 (isub1 X) Y Z)
(TAK17 (isub1 Y) Z X)
(TAK99 (isub1 Z) X Y)))))
(DEFUN TAK47 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK48 (TAK76 (isub1 X) Y Z)
(TAK28 (isub1 Y) Z X)
(TAK16 (isub1 Z) X Y)))))
(DEFUN TAK48 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK49 (TAK13 (isub1 X) Y Z)
(TAK39 (isub1 Y) Z X)
(TAK33 (isub1 Z) X Y)))))
(DEFUN TAK49 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK50 (TAK50 (isub1 X) Y Z)
(TAK50 (isub1 Y) Z X)
(TAK50 (isub1 Z) X Y)))))
(DEFUN TAK50 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK51 (TAK87 (isub1 X) Y Z)
(TAK61 (isub1 Y) Z X)
(TAK67 (isub1 Z) X Y)))))
(DEFUN TAK51 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK52 (TAK24 (isub1 X) Y Z)
(TAK72 (isub1 Y) Z X)
(TAK84 (isub1 Z) X Y)))))
(DEFUN TAK52 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK53 (TAK61 (isub1 X) Y Z)
(TAK83 (isub1 Y) Z X)
(TAK1 (isub1 Z) X Y)))))
(DEFUN TAK53 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK54 (TAK98 (isub1 X) Y Z)
(TAK94 (isub1 Y) Z X)
(TAK18 (isub1 Z) X Y)))))
(DEFUN TAK54 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK55 (TAK35 (isub1 X) Y Z)
(TAK5 (isub1 Y) Z X)
(TAK35 (isub1 Z) X Y)))))
(DEFUN TAK55 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK56 (TAK72 (isub1 X) Y Z)
(TAK16 (isub1 Y) Z X)
(TAK52 (isub1 Z) X Y)))))
(DEFUN TAK56 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK57 (TAK9 (isub1 X) Y Z)
(TAK27 (isub1 Y) Z X)
(TAK69 (isub1 Z) X Y)))))
(DEFUN TAK57 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK58 (TAK46 (isub1 X) Y Z)
(TAK38 (isub1 Y) Z X)
(TAK86 (isub1 Z) X Y)))))
(DEFUN TAK58 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK59 (TAK83 (isub1 X) Y Z)
(TAK49 (isub1 Y) Z X)
(TAK3 (isub1 Z) X Y)))))
(DEFUN TAK59 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK60 (TAK20 (isub1 X) Y Z)
(TAK60 (isub1 Y) Z X)
(TAK20 (isub1 Z) X Y)))))
(DEFUN TAK60 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK61 (TAK57 (isub1 X) Y Z)
(TAK71 (isub1 Y) Z X)
(TAK37 (isub1 Z) X Y)))))
(DEFUN TAK61 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK62 (TAK94 (isub1 X) Y Z)
(TAK82 (isub1 Y) Z X)
(TAK54 (isub1 Z) X Y)))))
(DEFUN TAK62 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK63 (TAK31 (isub1 X) Y Z)
(TAK93 (isub1 Y) Z X)
(TAK71 (isub1 Z) X Y)))))
(DEFUN TAK63 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK64 (TAK68 (isub1 X) Y Z)
(TAK4 (isub1 Y) Z X)
(TAK88 (isub1 Z) X Y)))))
(DEFUN TAK64 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK65 (TAK5 (isub1 X) Y Z)
(TAK15 (isub1 Y) Z X)
(TAK5 (isub1 Z) X Y)))))
(DEFUN TAK65 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK66 (TAK42 (isub1 X) Y Z)
(TAK26 (isub1 Y) Z X)
(TAK22 (isub1 Z) X Y)))))
(DEFUN TAK66 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK67 (TAK79 (isub1 X) Y Z)
(TAK37 (isub1 Y) Z X)
(TAK39 (isub1 Z) X Y)))))
(DEFUN TAK67 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK68 (TAK16 (isub1 X) Y Z)
(TAK48 (isub1 Y) Z X)
(TAK56 (isub1 Z) X Y)))))
(DEFUN TAK68 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK69 (TAK53 (isub1 X) Y Z)
(TAK59 (isub1 Y) Z X)
(TAK73 (isub1 Z) X Y)))))
(DEFUN TAK69 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK70 (TAK90 (isub1 X) Y Z)
(TAK70 (isub1 Y) Z X)
(TAK90 (isub1 Z) X Y)))))
(DEFUN TAK70 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK71 (TAK27 (isub1 X) Y Z)
(TAK81 (isub1 Y) Z X)
(TAK7 (isub1 Z) X Y)))))
(DEFUN TAK71 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK72 (TAK64 (isub1 X) Y Z)
(TAK92 (isub1 Y) Z X)
(TAK24 (isub1 Z) X Y)))))
(DEFUN TAK72 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK73 (TAK1 (isub1 X) Y Z)
(TAK3 (isub1 Y) Z X)
(TAK41 (isub1 Z) X Y)))))
(DEFUN TAK73 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK74 (TAK38 (isub1 X) Y Z)
(TAK14 (isub1 Y) Z X)
(TAK58 (isub1 Z) X Y)))))
(DEFUN TAK74 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK75 (TAK75 (isub1 X) Y Z)
(TAK25 (isub1 Y) Z X)
(TAK75 (isub1 Z) X Y)))))
(DEFUN TAK75 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK76 (TAK12 (isub1 X) Y Z)
(TAK36 (isub1 Y) Z X)
(TAK92 (isub1 Z) X Y)))))
(DEFUN TAK76 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK77 (TAK49 (isub1 X) Y Z)
(TAK47 (isub1 Y) Z X)
(TAK9 (isub1 Z) X Y)))))
(DEFUN TAK77 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK78 (TAK86 (isub1 X) Y Z)
(TAK58 (isub1 Y) Z X)
(TAK26 (isub1 Z) X Y)))))
(DEFUN TAK78 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK79 (TAK23 (isub1 X) Y Z)
(TAK69 (isub1 Y) Z X)
(TAK43 (isub1 Z) X Y)))))
(DEFUN TAK79 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK80 (TAK60 (isub1 X) Y Z)
(TAK80 (isub1 Y) Z X)
(TAK60 (isub1 Z) X Y)))))
(DEFUN TAK80 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK81 (TAK97 (isub1 X) Y Z)
(TAK91 (isub1 Y) Z X)
(TAK77 (isub1 Z) X Y)))))
(DEFUN TAK81 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK82 (TAK34 (isub1 X) Y Z)
(TAK2 (isub1 Y) Z X)
(TAK94 (isub1 Z) X Y)))))
(DEFUN TAK82 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK83 (TAK71 (isub1 X) Y Z)
(TAK13 (isub1 Y) Z X)
(TAK11 (isub1 Z) X Y)))))
(DEFUN TAK83 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK84 (TAK8 (isub1 X) Y Z)
(TAK24 (isub1 Y) Z X)
(TAK28 (isub1 Z) X Y)))))
(DEFUN TAK84 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK85 (TAK45 (isub1 X) Y Z)
(TAK35 (isub1 Y) Z X)
(TAK45 (isub1 Z) X Y)))))
(DEFUN TAK85 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK86 (TAK82 (isub1 X) Y Z)
(TAK46 (isub1 Y) Z X)
(TAK62 (isub1 Z) X Y)))))
(DEFUN TAK86 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK87 (TAK19 (isub1 X) Y Z)
(TAK57 (isub1 Y) Z X)
(TAK79 (isub1 Z) X Y)))))
(DEFUN TAK87 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK88 (TAK56 (isub1 X) Y Z)
(TAK68 (isub1 Y) Z X)
(TAK96 (isub1 Z) X Y)))))
(DEFUN TAK88 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK89 (TAK93 (isub1 X) Y Z)
(TAK79 (isub1 Y) Z X)
(TAK13 (isub1 Z) X Y)))))
(DEFUN TAK89 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK90 (TAK30 (isub1 X) Y Z)
(TAK90 (isub1 Y) Z X)
(TAK30 (isub1 Z) X Y)))))
(DEFUN TAK90 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK91 (TAK67 (isub1 X) Y Z)
(TAK1 (isub1 Y) Z X)
(TAK47 (isub1 Z) X Y)))))
(DEFUN TAK91 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK92 (TAK4 (isub1 X) Y Z)
(TAK12 (isub1 Y) Z X)
(TAK64 (isub1 Z) X Y)))))
(DEFUN TAK92 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK93 (TAK41 (isub1 X) Y Z)
(TAK23 (isub1 Y) Z X)
(TAK81 (isub1 Z) X Y)))))
(DEFUN TAK93 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK94 (TAK78 (isub1 X) Y Z)
(TAK34 (isub1 Y) Z X)
(TAK98 (isub1 Z) X Y)))))
(DEFUN TAK94 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK95 (TAK15 (isub1 X) Y Z)
(TAK45 (isub1 Y) Z X)
(TAK15 (isub1 Z) X Y)))))
(DEFUN TAK95 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK96 (TAK52 (isub1 X) Y Z)
(TAK56 (isub1 Y) Z X)
(TAK32 (isub1 Z) X Y)))))
(DEFUN TAK96 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK97 (TAK89 (isub1 X) Y Z)
(TAK67 (isub1 Y) Z X)
(TAK49 (isub1 Z) X Y)))))
(DEFUN TAK97 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK98 (TAK26 (isub1 X) Y Z)
(TAK78 (isub1 Y) Z X)
(TAK66 (isub1 Z) X Y)))))
(DEFUN TAK98 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK99 (TAK63 (isub1 X) Y Z)
(TAK89 (isub1 Y) Z X)
(TAK83 (isub1 Z) X Y)))))
(DEFUN TAK99 (X Y Z)
(COND ((NOT (ilessp Y X)) Z)
(T (TAK0 (TAK0 (isub1 X) Y Z)
(TAK0 (isub1 Y) Z X)
(TAK0 (isub1 Z) X Y)))))
(de timit ()
(do ((n 2 (isub1 n)))
((izerop n))
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)
(tak0 18 12 6)))